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Dual Baxter equations and quantization of the affine Jacobian
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16, 1er étage, 4 place Jussieu, 75252 Paris Cedex 05, France

Received 26 January 2000

Abstract. A quantum integrable model is considered which describes a quantization of the affine
hyper-elliptic Jacobian. This model is shown to possess the property of duality: a dual model with
inverse Planck constant exists such that the eigenfunctions of its Hamiltonians coincide with the
eigenfunctions of Hamiltonians of the original model. We explain that this duality can be considered
as duality between homologies and cohomologies of quantized affine hyper-elliptic Jacobian.

1. Introduction

The relation between the affine Jacobian and integrable models is well known (cf [1]). In
paper [2] we have shown that the algebra of functions on the affine Jacobian is generated by
the action of Hamiltonian vector fields from a finite number of functions. The latter functions
are coefficients of the highest non-vanishing cohomologies of the affine Jacobian. Actually,
the idea that such a description of the algebra of functions is possible appeared in [3] which
considers the structure of the algebra of observables for the quantum and the classical Toda
chain.

In this paper we give a quantum version of [2]. A quantum mechanical model is formulated
which gives a quantization of the affine Jacobian. As usual in quantum mechanics, we can
describe not the variety itself but the algebra of functions on it (observables). We need to show
that the quantum algebra of observables possesses the essential property of the corresponding
classical algebra of functions. In our case this property is the possibility of creating every
observable from a finite number of observables (cohomologies) by the action of Hamiltonians.

In the process of realization of this programme we find the Baxter equations which describe
the spectrum of the model. It happens that these equations possess the property of duality:
there is a dual model with inverse Planck constant for which the eigenvectors are the same.
The algebras of observables of two dual models commute. The next ingredient of our study
is the method of separation of variables developed by Sklyanin [4]. Using this method we
present the matrix elements of any observable in terms of certain integrals.

We show that the integrals in question are expressed in terms of deformed Abelian integrals
(cf [3, 5]). The observables for both dual models are defined in terms of cohomologies.
The most beautiful feature of our construction is that in these cohomologies the integrals for
matrix elements enter in such a way that the cohomologies of the dual model play the role
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of homologies for the original one and vice versa. We consider this relation between weak–
strong duality in quantum theory and duality between homologies and cohomologies as the
most important conclusion of this paper.

2. Affine Jacobian

In this section we briefly summarize necessary facts concerning the relation between integrable
models and algebraic geometry, following paper [2]. The reason for repeating certain facts
from [2] is that we shall need them in a slightly different situation.

Consider a 2× 2 matrix which depends polynomially on the parameter z:

m(z) =
(
a(z) b(z)

c(z) d(z)

)

where the matrix elements are polynomials of the form

a(z) = zg+1 + a1z
g + · · · + ag+1

b(z) = zg + b1z
g−1 + · · · + bg

c(z) = c2z
g + c3z

g−1 · · · + cg+2

d(z) = d2z
g−1 + d3z

g−2 · · · + dg+1.

(1)

In the the affine space C
4g+2 with coordinates a1, . . . , ag+1, b1, . . . , bg , c2, . . . , cg+2,

d2, . . . , dg+1 consider the (2g + 1)-dimensional affine variety M defined as quadric

f (z) ≡ a(z)d(z)− b(z)c(z) = 1. (2)

We consider this simplest situation, but in principle it is possible to put an arbitrary polynomial
of degree 2g in the rhs.

On the quadric M let us consider the sections Jaff(t) defined by

a(z) + d(z) = t (z) (3)

where t (z) is given polynomial of the form

t (z) = zg+1 + zgt1 + · · · + tg+1. (4)

The notation Jaff(t) stands for affine Jacobi variety. The definition of affine Jacobi variety and
its equivalence to Jaff(t) described above are given in the appendix A. We include appendix A
because there is minor difference with the situation considered in [1, 2]. The variety M is
foliated into the affine Jacobians Jaff(t). The mechanical model described below provides a
clever way of describing this foliation.

We wish to understand the geometrical meaning of quantum integrable models. The
general philosophy teaches that in order to describe the quantization of a manifold one has
to deform the algebra of functions on this manifold, preserving certain essential properties of
this algebra. The classical algebra must allow the Poisson structure in order that quantization
is possible.

Certain Poisson brackets for the coefficients of matrixm(z) can be introduced. We do not
write them down explicitly; if needed they can be obtained by taking the classical limit of the
commutation relations (14). The algebra

Â = C[a1, . . . , ag+1, b1, . . . , bg, c2, . . . , cg+2, d2, . . . , dg+1]

becomes a Poisson algebra. The most important properties of this Poisson structure are the
following. First, the coefficients of the determinant f (z) belong to the centre of the Poisson
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algebra, so equation (2) is consistent with Poisson structure. Second, the trace t (z) generates
the commutative subalgebra

{t (z), t (z′)} = 0.

In fact it can be shown that the coefficient tg+1 of the trace belongs to the centre; it is convenient
to put tg+1 = (−1)g+12. The subject of our study is the algebra of functions on the M:

A = Â
{f (z) = 1, tg+1 = (−1)g+12}

on which the Poisson structure is well defined.
The Poisson commutative algebra generated by the coefficients t1, . . . , tg is called the

algebra of the integrals of motion. Introduce the commuting vector fields

∂ig = {ti , g} i = 1, . . . g.

The vector fields ∂j describe motion along the subvarieties Jaff(t).
One can think of these vector fields as

∂j = ∂

∂τj

where τj are ‘times’ corresponding to the integrals of motion tj . Define the ring of integrals
of motion

T = C[t1, . . . , tg]. (5)

Introduce the space of differential forms Ck with basis

x dτi1 ∧ · · · ∧ dτik x ∈ A
and the differential

d = ∂j dτj .

Consider the corresponding cohomologiesHk . In [2] the arguments are given in favour of the
following conjecture.

Conjecture 1. The cohomologies Hk are finite-dimensional over the ring T ; they are
isomorphic to the cohomologies of the affine variety Jaff(t) with t in generic position.

On the algebra A and on the spaces Ck one can introduce degree [2]. Take the basis of Hg

considered as a vector space over T which is composed of homogeneous representatives

�α = gα dτ1 ∧ · · · ∧ dτg

where α takes a finite number of values. The fact of foliation of M into varieties Jaff(t)

corresponds to the following statement concerning the algebra A [2].

Proposition 1. Every element x of A can be presented in the form

x =
∑
α

pα(∂1, . . . , ∂g)gα (6)

where pα(∂1, . . . , ∂g) are polynomials of ∂1, . . . , ∂g with coefficients in T .

The representation (6) is not unique; the equations∑
α

pα(∂1, . . . , ∂g)gα = 0 (7)

are counted by Hg−1 [2].
Formula (6) can be useful only if we are able to control the cohomologies. Concerning

these cohomologies we adopt several conjectures following [2].
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3. Conjectured form of cohomologies

The affine variety Jaff(t) allows the following description. Consider the hyper-elliptic curve
X of genus g:

w2 − t (z)w + 1 = 0. (8)

This curve has two points over the point z = ∞ which we denote by∞±.
Consider a matrix m(z) satisfying (2). Take the zeros of b(z):

b(z) =
g∏
j=1

(z− zj )

and

wj = d(zj ).
Obviously zj , wj satisfy the equation of the curveX (8). Thusm(z) defines a point P (divisor)
on the symmetrized gth power X[g] of the curve X. The divisor P consists of the points
pj = (zj , wj ) ∈ X.

On the other hand, one can reconstructm(z) starting form the divisor P . The corresponding
map is singular, the singularities being located on

D = {P|pi = σ(pj ) for some i, j or pi = ∞± for some i} (9)

where σ is a hyper-elliptic involution. Thus the alternative description of Jaff(t) is

Jaff(t) = X[g]−D.
Consider the meromorphic differentials on X with singularities at ∞±. We choose the

following basis of these differentials:

µk(p) = zg+k dz

y
− g � k � 0

µk(p) =
[
y

d

dz
(zk−g−1y)

]
�

dz

y
k � 1

(10)

where p = (z, w), y = 2w− t (z), [ ]� means that only non-negative degrees of Laurent series
in the brackets are taken.

The form

µ̃k =
∑
i

µk(pi)

is viewed as a form on Jaff(t). It is easy to see that the forms µk (hence µ̃k) with k � g + 1
are exact. Consider the spaceWm with the basis

�k1,...,km = µ̃k1 ∧ · · · ∧ µ̃km
where −g � kj � g. As in [2] we adopt the following conjecture.

Conjecture 2. We have

Hm = Wm

σ ∧Wm−2
(11)

where

σ =
g∑
j=1

µ̃j ∧ µ̃−j .



Dual Baxter equations and quantization of the affine Jacobian 3389

According to (9) the singularities of differential forms occur either at pi = σ(pj ) or at
pi = ∞±. The nontrivial essence of conjecture 2 is that the first kind of singularity can be
eliminated by adding exact forms. There are (g − 1)-forms singular at pi = σ(pj ) such that
these singularities disappear after applying d. This is the origin of the space σ ∧Wk−2 [2].

Consider briefly the dual picture. On the affine curve with punctures at ∞± there are
2g + 1 nontrivial cycles δk with k = −g, . . . , g. The cycles δk , k < 0 are a-cycles, the
cycles δk , k > 0 are b-cycles and δ0 is the cycle around ∞+. One defines the cycles δ̃k on
the symmetrical power of the affine curve. The ∧-operation is introduced for these cycles by
duality with cohomologies. The nontrivial consequence of conjecture 2 is that every cycle on
Jaff(t) can be constructed by wedging δ̃k . The formula dual to (11) is

Hm = Wm

σ ′ ∧Wm−2
(12)

whereWm is spanned by

$k1,...,km = δ̃k1 ∧ · · · ∧ δ̃km
and

σ ′ =
g∑
j=1

δ̃j ∧ δ̃−j .

We need to factorize over σ ′ ∧Wm−2 because the 2-cycle σ ′ intersects with D.
Let us return to the relation of Hg to the algebra A. Notice that

dτ1 ∧ · · · ∧ dτg � µ̃1 ∧ · · · ∧ µ̃g ≡ �.
The functions

xk1,...,kg = �−1�k1,...,kg

are symmetric polynomials of z1, . . . , zg . Recall that b1, . . . , bg are nothing but elementary
symmetric polynomials of z1, . . . , zg . Hence the coefficients of cohomologies have the form

gα = gα(b1, . . . , bg).

The dimension of Hg is determined by conjecture 2:

α = 1, . . . ,

(
2g + 1

g

)
−

(
2g + 1

g − 2

)
.

Equations (7) are the consequences of the following ones:
g∑
k=1

∂k(�
−1(µ−k ∧�k1,...,kg−1)) = 0 ∀�k1,...,kg−1 ∈ Wg−1. (13)

4. Quantization of the affine Jacobian

Let us consider a quantization of algebra A. The parameter of deformation (Planck constant)
is denoted by γ , we shall also use

q = eiγ .

Consider the 2× 2 matrix m(z) with noncommuting entries. Suppose that the dependence on
the spectral parameter z is exactly the same as in the classical case (1). The variables aj , bj ,
cj , dj are subject to commutation relations which are summarized as follows:

r21(z1, z2)m1(z1)k12(z1)s12m2(z2)k21(z2) =m2(z2)k21(z2)s21m1(z1)k12(z1)r12(z1, z2)

(14)
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where usual conventions are used: equation (14) is written in the tensor product C
2 ⊗ C

2,
a1 = a ⊗ I , a2 = I ⊗ 2, a21 = Pa12P where P is the operation of permutations. The
C-number matrices r , k, s are

r12(z1, z2) = z1 − qz2

1− q (I ⊗ I ) +
z1 + qz2

1 + q
(σ 3 ⊗ σ 3) + 2(z1σ

− ⊗ σ + + z2σ
+ ⊗ σ−)

k12(z) = I ⊗ (I − σ 3) + (q−σ
3

+ z(q2 − 1)σ−)⊗ (I + σ 3)

s12 = I ⊗ I − (q − q−1)σ− ⊗ σ +.

(15)

These commutation relations are important because they respect the form of matrix m(z)

prescribed by (1); we shall explain how they are related to more usual r-matrix relations in the
next section.

Define the polynomials:

t(z) = qa(z) + q2d(z)− z(q2 − 1)b(z)
f(z) = qd(z)t(zq−2)− q2d(z)d(zq−2)− qb(z)c(zq−2).

(16)

The algebra Â(q) is generated by a1, . . . ,ag+1, b1, . . . , bg , c2, . . . , cg+2, d2, . . . ,dg+1. The
polynomial f(z) belongs to the centre of Â(q). The coefficients of t(z) are commuting; in
fact tg+1 belongs to the centre of Â(q). We define

A(q) = Â(q)
{f(z) = 1, tg+1 = (−1)g+12} .

The noncommutative algebra A(q) defines a quantization of the algebra of functions on the
quadric M. However, we cannot directly define the quantization of the algebra of functions on
the affine Jacobian because the coefficients of t(z) are not in the centre of A(q). What we can
do is to describe the quantum version of proposition 1 and of the description of cohomologies.
The exposition will be more detailed than in the classical case.

As in [3] we accept the following conjecture.

Conjecture 3. The algebra A(q) is spanned as linear space by elements of the form:

x = pL(t1, . . . , tg)g(b1, . . . , bg)pR(t1, . . . , tg) (17)

where pL(t1, . . . , tg), g(b1, . . . , bg), pR(t1, . . . , tg) are polynomials.

We were not able to prove this statement; however, since the algebra A(q) is graded we can
check it degree by degree. This has been done up to degree 8. Notice the similarity between
the representation (17) and the representation for spin operators proved in [6]. Conjecture 3
implies that certain generalization of the results of [6] is possible. In fact, formula (17) is similar
to formula (6): we can either symmetrize or antisymmetrize tj in (17), which corresponds in
classics to multiplication by tj or to applying ∂j . In order to have complete agreement with
the classical case we have to show that only finitely many different polynomials g(b1, . . . , bg)

(cohomologies) create the entire algebra A(q).
Notice that the commutation relations (14) imply in particular that

[b(z), b(z′)] = 0

which means that we have the commutative family of operators zj defined by

b(z) =
∏
(z− zj ).

So, every polynomial g(b1, . . . , bg) can be considered as a symmetric polynomial of zj and
vice versa.

It is very convenient to use the following formal definitions. Consider the ring T defined
in (5). By Vk we denote the space of antisymmetric polynomials of k variables such that their
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degrees with respect to every variable is not less than 1 with coefficients in T ⊗ T . In other
words, Vk is the space spanned by the polynomials

pL · h · pR ≡ pL(t1, . . . , tg)h(z1, . . . , zk)pR(t
′
1, . . . , t

′
g)

where h is antisymmetric, vanishing when one of zj vanishes. The following operations can
be defined.

(1) Multiplication by tj and t ′j .
(2) Operation ∧ : Vk ⊗ V l → Vk+l which is defined as follows:

(pL · h · pR) ∧ (p′L · h′ · p′R) = pLp′L · (h ∧ h′) · pRp′R
where

(h ∧ h′)(z1, . . . , zk+l) = 1

k!l!

∑
π∈Sk+l

(−1)πh(zπ(1), . . . , zπ(k))h
′(zπ(k+1), . . . , zπ(k+l)).

We have a map

Vg χ−→ A(q)
defined on the basis elements as

χ(pL · h · pR) = pL(t1, . . . , tg)
h(z1, . . . , zg)∏
zi

∏
i<j (zi − zj )

pR(t1, . . . , tg)

and continued linearly. The conjecture 3 states that this map is surjective. We want to describe
the kernel of the map χ .

First, consider the space V1. The elements of this space are polynomials of one variable
z with coefficients in T ⊗ T . In appendix B we describe a certain basis in V1 considered as a
linear space over T ⊗ T . The basis in question consists of the polynomials: sk with k � −g
such that the degree of sk with respect to z equals g + k + 1. The kernel of χ is the joint of
three subspaces; let us describe them.

(1) For k � g + 1 we have

χ(sk ∧ Vg−1) = 0. (18)

(2) Consider c ∈ V2 defined as

c =
g∑
j=1

sj ∧ s−j .

We have

χ(c ∧ Vg−2) = 0. (19)

(3) Consider d ∈ V1 defined as

d = (tj − t ′j )s−j .
We have

χ(d ∧ Vk−1) = 0. (20)
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The construction of the space

Vg
Ker (χ)

� A(q)

is in complete correspondence with the classical case. In classics we start with all the 1-forms
µ̃k . Imposing (18) corresponds to throwing away the exact forms and working with µ̃k for
k = −g, . . . , g only. Imposing (19) corresponds to factorizing over σ ∧ Wk−2 in classics.
Finally, (20) corresponds to equation (13).

The origin of equations (18)–(20) will be explained in section 9. There should be a purely
algebraic method of proving these equations, but we do not know it. It is important to mention
that by accepting conjecture 3 we are forced to conclude that the kernel of χ is completely
described by the equations (18)–(20). This is proved by calculation of characters in a similar
way as in [3].

5. The realization of A(q)

We want to describe a realization of the algebra A(q) in a space of functions. Consider the
quantum mechanical system described by the operators xj with j = 1, . . . , 2g + 2 and y (zero
mode). The operators xj and y are self-adjoint, they satisfy the commutation relations:

xkxl = q2xlxk k < l

yxk = q2xky ∀k.
The Hamiltonian of the system is

h = q−1
2g+2∑
k=1

xkx
−1
k−1

where

x2g+3 ≡ qyx1.

Physically this model defines the simplest lattice regularization of the chiral Bose field with
modified energy–momentum tensor.

It is useful to double the number of degrees of freedom. Consider the algebraA generated
by two operators u and v satisfying the commutation relations

uv = qvu.
Take the algebra A⊗(2g+2); the operators uj , vj (j = 1, . . . , 2g + 2) are defined as u and v
acting in j th tensor component. The original operators xi are expressed in terms of ui, vi as
follows:

xk = vk
k−1∏
j=1

u−2
j y =

2g+2∏
j=1

uj .

Consider the ‘monodromy matrix’

m̃(z) =
(

ã(z) b̃(z)

c̃(z) d̃(z)

)
= l2g+2(z) . . . l1(z) (21)

where the l-operators are

l(z) = 1√
z

(
zu −qvu

zv−1u−1 0

)
. (22)



Dual Baxter equations and quantization of the affine Jacobian 3393

This is a particular case of the more general l-operator l(z, κ) in which the last matrix element
is not 0 but κzu; the model corresponding to the latter l-operator is a subject of study in a
series of papers [7].

The matrix elements of the matrix m(z) satisfy the commutation relations

r12(z1, z2)m̃1(z1)m̃2(z2) = m̃2(z2)m̃1(z1)r12(z1, z2) (23)

where the r-matrix r12(z1, z2) is defined earlier (15). These are canonical r-matrix
commutation relations. The quantum determinant of the matrix m̃(z) is defined by

f(z) = d̃(z)ã(zq−2)− b̃(z)c̃(zq−2)

and it belongs to the centre; in our realization of m̃(z) one has f(z) = 1. The trace of m̃(z)

generates commuting quantities; we denote this trace as follows:

ã(z) + d̃(z) = yt(z).
The matrix elements of the matrix m̃(z) are of the form

ã(z) = ã0z
g+1 + ã1z

g + · · · + ãg+1

b̃(z) = b̃0z
g + b̃1z

g−1 + · · · + b̃g
c̃(z) = c̃1z

g+1 + c̃2z
g + · · · + c̃g+1z

d̃(z) = d̃1z
g + d̃2z

g−1 + · · · + d̃gz

(24)

where, in particular, ã0 = y. This form of polynomial, ã(z), b̃(z), c̃(z), d̃(z), does not
correspond to what we have in the classical model of the affine Jacobian. This is the reason
for modifying the matrix m̃(z) as follows:

m(z) =
(

ã0b̃
−1
0 0

−d̃1b̃
−1
0 1

)
m̃(z)

(
b̃0ã
−1
0 0

qd̃1ã
−1
0 1

)
.

The matrix elements of this matrix have structure (1), they satisfy closed commutation
relations (14), and the operators f(z) and t(z) defined for these two matrices coincide; in
particular we have

t1 = h.

Thus the modification of matrix m̃(z) which is necessary for relation to the affine Jacobian is
responsible for the appearance of the strange-looking commutation relations (14).

6. Q-operator

Our first goal is to define Baxter’s Q-operator. Let us realize the operators v, u in L2(R) as
follows:

v = eϕ u = eiγ d
dϕ .

We shall work in the ϕ-representation, i.e. in the space H = (L2(R))
⊗(2g+2). Following the

standard procedure [8] one introduces the vectorsQ(ζ | ψ1, . . . , ψ2g+2) which depend on

ζ = 1
2 log z

and 2g + 2 additional parameters, ψj , and satisfy the equation

(−1)g+1t(z)Q(ζ | ψ1, . . . , ψ2g+2)

= Q(ζ + iγ |ψ1, . . . , ψ2g+2) +Q(ζ − iγ |ψ1, . . . , ψ2g+2).

In ϕ-representation the ‘components’ of these vectors are given by

Q(ϕ1, . . . , ϕ2g+2|ζ |ψ1, . . . , ψ2g+2) = e
1
2 (1+ π

γ
)ζ+ 1

4iγ ζ
2

2g+2∏
k=1

λ(ζ |ϕk − ψk)〈ϕk|ψk−1〉 (25)



3394 F A Smirnov

where ψ0 ≡ ψ2g+2,

〈ϕ|ψ〉 = e
1

4iγ (2ϕψ−ϕ2)

λ(ζ |ψ) = e−
1

2iγ ζψ;(ψ − ζ )e π+γ
γ
(ψ−ζ ) (26)

and the function ;(ϕ) satisfies the functional equation

;(ϕ + iγ )

;(ϕ − iγ )
= 1

1 + eϕ
. (27)

The solution to this equation is

;(ϕ) = exp

( ∫
R+i0

eikϕ

4 sinh γ k sinh πk

dk

k

)
.

This wonderful function and its applications can be found in [9].
As usual we want to consider Q(ϕ1, . . . , ϕ2g+2|ζ |ψ1, . . . , ψ2g+2) as the kernel of an

operator:

Q(ϕ1, . . . , ϕ2g+2|ζ |ψ1, . . . , ψ2g+2) = 〈ϕ1, . . . , ϕ2g+2|Q(ζ )|ψ1, . . . , ψ2g+2〉.
The subtle point is that we have to use mixed representations: the vectors |ψ〉 are the
eigenvectors of the operators

w ≡ eψ = uvu.
Notice that this justifies the notation 〈ϕ|ψ〉 in (26), and that

[ψ, ϕ] = 2iγ.

The operators Q(ζ ) satisfy the equations

(−1)g+1t(z)Q(ζ ) = Q(ζ + iγ ) + Q(ζ − iγ ). (28)

This is the well known Baxter equation.
Before going further, let us discuss the properties of operator Q(ζ ). We have

;(ϕ) = ;(ϕ̄)
;(ϕ) ∼ exp

(
1

4iγ
ϕ2

)
as ϕ→∞ (29)

so the kernel of Q(ζ ) for ζ ∈ R is an oscillating function, and it is clear that our operator is
well defined on the functions of ψj of Schwartz class (Schψ ) sending them to functions of
ϕj which are also of Schwartz class (Schϕ). Using equations (29) one easily finds the kernel
〈ψ |Q∗(ζ )|ϕ〉 of the adjoint operator Q∗(ζ ) (we consider the case of real ζ ). Further, note that
the l-operator can be rewritten as

l(z) = 1√
z

(
zu −qu−1w

zuw−1 0

)
. (30)

Applying to this l-operator the same procedure as before one finds that Q∗(ζ ) also solves the
Baxter equation (28):

(−1)g+1t(z)Q∗(ζ ) = Q∗(ζ + iγ ) + Q∗(ζ − iγ ).

It can be shown that

Q(ζ ) = Q∗(ζ ) for ζ ∈ R.

Considering the kernel of operator Q∗(ζ ) one finds that this operator acts from Schϕ to Schψ .
So, the products Q(ζ )Q(ζ ′) are well defined, at least for ζ, ζ ′ ∈ R.
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We want to show that the operators Q(ζ ) constitute a commutative family:

[Q(ζ ),Q(ζ ′)] = 0. (31)

To this end we want to show that the operator Q(ζ ) can be rewritten as

Q(ζ ) = tra(La2q+2(ζ ) · · ·La1(ζ )) (32)

where the operators Laj (ζ ) act in the tensor product of the ‘auxiliary space’ labelled by a and
of the ‘quantum space’ where ϕj , ψj act. Actually in our case the ‘auxiliary space’ will be
isomorphic to the ‘quantum space’, i.e. we shall have a universal l-operator. If the operators
Laj (ζ ) satisfy Yang–Baxter equations with someR-matrix then the commutativity (31) follows
from the standard argument.

To find the representation (32) rewrite (25) as

Q(ζ ) = e
1
2 (1+ π

γ
)ζ+ 1

4iγ ζ
2
∫ 2g+2∏

j=1

dϕ′j dψ ′j 〈ψ ′j |Laj (ζ )|ϕ′j 〉〈ϕ′j |ψ ′j−1〉

where ϕ′j , ψ
′
j are operators acting in the ‘auxiliary space’, ψ ′0 = ψ ′2g+2. So, (32) indeed takes

place if the kernel of the ‘universal’ l-operator is given by

〈ϕ′| ⊗ 〈ψ |L(ζ )|ψ ′〉 ⊗ |ϕ〉 = δ(ϕ − ϕ′)δ(ψ − ψ ′)λ(ζ |ϕ − ψ).
Hence, equation (32) holds for the operators Laj (ζ ) of the form

L12(ζ ) = P12L̂12(ζ )

where P12 is the operator of permutation, and the operator L̂12(ζ ) acts in the tensor product as
follows:

L̂12(ζ ) = λ(ζ | ϕ ⊗ I − I ⊗ ψ).
Thus the operator Q(ζ ) can be considered as trace of the ‘universal’ monodromy matrix and
the commutativity (31) follows from the Yang–Baxter equation:

R̂12(ζ1 − ζ2)L̂23(ζ1)L̂12(ζ2) = L̂23(ζ2)L̂12(ζ1)R̂23(ζ1 − ζ2) (33)

with the simple r-matrix

R̂12(ζ ) = exp

(
(I ⊗ ψ − ϕ ⊗ I )ζ

2iγ

)
.

The Yang–Baxter equation (33) in our case is almost trivial. In the case of the more general
l-operator l̂(z, κ) mentioned above, we would need to use a more complicated r-matrix and
the proof of Yang–Baxter equations needs some nontrivial identities [10].

The self-adjoint (for real ζ1, ζ2) operators Q(ζ1), Q(ζ2) commute, hence the eigenvectors
of Q(ζ ) do not depend on ζ . In fact, the operator Q(ζ ) is an entire function of ζ . The kernel of
Q(ζ ) has poles, but in the process of analytical continuation the poles never pinch the contour
of integration. The Baxter equation (28) implies that Q(ζ1) and t(z2) also commute. Suppose
that Q(ζ ) ant t (z) are eigenvalues of these operators; owing to equation (28) they satisfy

(−1)g+1t (z)Q(ζ ) = Q(ζ + iγ ) + Q(ζ − iγ ). (34)

Let us discuss further analytical properties of Q(ζ ). Since the operator Q(ζ ) is an entire
function of ζ the eigenvalue Q(ζ ) is an entire function as well. As has been said, t(0) = tg+1

belongs to the centre of the algebra defined by the commutation relations (23), so we can fix
it. It is convenient to put tg+1 = (−1)g+12 which allows us to require that

Q(ζ )→ 1 ζ →−∞. (35)
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From quasiclassical considerations which are completely parallel to those from [3, 8] it is
naturally to conjecture that the eigenvalues of Q(ζ ) have zeros only on the real axis and that
asymptotically for ζ →∞ one has

Q(ζ ) ∼ e−(g+1)(1+ π
γ
)ζ cos

(
(g + 1)ζ 2

γ
+
π

4

)
. (36)

The important question is whether equation (34) together with the analytical properties
described above are sufficient to find the spectrum of commuting Hamiltonians. In our opinion
it is impossible: additional information is needed, which is provided in the following section.

7. Duality

Consider the function ;(ζ). The most interesting property of this function is its duality:
together with equation (27) it satisfies the equation

;(ϕ + iπ)

;(ϕ − iπ)
= 1

1 + e
π
γ
ϕ
.

Using this property and the definition of the operator Q(ζ ) one finds that there is dual equation
for Q(ζ ):

(−1)g+1T (Z)Q(ζ ) = Q(ζ + π i) + Q(ζ − π i) (37)

where

Z = e
2π
γ
ζ

and T (Z) is the trace of the monodromy matrix

M̃(Z) = L2g+2(Z) · · ·L1(Z)

with

L(Z) = 1√
Z

(
ZU−1 −QVU

ZV −1U−1 0

)
.

The dual operators

U = e
π
γ
ϕ

V = eπ i d
dϕ

satisfy the commutation relations

UV = QVU
with dual

Q = ei π
2

γ .

The only nontrivial commutation relations of u, v with U,V are

uV = −V u vU = −Uv
which means that

S(l(z)⊗ I )(I ⊗ L(Z)) = (I ⊗ L(Z))(l(z)⊗ I )S
with S = σ 3 ⊗ σ 3. From here it is obvious that

[t(z),T (Z)] = 0.

All that is the result of manifest duality of the kernel of Q(ζ ) with respect to change:

γ → π2

γ
ζ → π

γ
ζ ϕj → π

γ
ϕj ψj → π

γ
ψj .
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It is clear that T (Z1) and Q(ζ2) commute, so equation (37) implies the equation for
eigenvalues:

(−1)g+1T (Z)Q(ζ ) = Q(ζ + π i) + Q(ζ − π i). (38)

The function Q(ζ ) is not an entire function of z as is the case in other situations (for
example, [11]), which is why equation (28) alone does not look strong enough to define it.
However, equation (37) controlling the behaviour of Q(ζ ) under 2π i-rotation in the z-plane
must provide the missing information.

So, our main conjecture is as follows.

Conjecture 4. The spectrum on t(z) (and, simultaneously, of T (Z)) is described by all
solutions of equations (34) and (38) such that

(1) t (z) and T (Z) are polynomials of degree g + 1.
(2) Q(ζ ) is an entire function of ζ .
(3) Q(ζ ) satisfies (35) and (36).
(4) All the zeros of Q(ζ ) in the strip −(π + γ ) < Im (ζ ) < (π + γ ) are real.

8. Separation of variables

The relation of integrable models to the algebraic geometry can be completely understood in
the framework of separation of variables.

We have already mentioned that

[b(z), b(z′)] = 0

which implies commutativity of the operatorszj defined as roots ofb(z). Consider the operators

wj = (−1)g+1qd(←−z j )

where d(←−zj ) means that zj , which does not commute with coefficients of d(z), is substituted
to this polynomial from the left. Following Sklyanin [4] one shows that

zjwk = wkzj j �= k zjwj = q2wjzj

and

w2
j −wj t(←−z j ) + 1 = 0. (39)

Introduce the operators

ζj = 1
2 log(zj )

and consider the wavefunction corresponding to a given set of eigenvalues of integral of motion
t1, . . . , tg in ζ-representation. Equation (39) implies [4] that we can look for this wavefunction
in the form

〈ζ1, . . . , ζg|t1, . . . , tg〉 = Q(ζ1) · · ·Q(ζg)
where Q(ζ ) satisfies

Q(ζ + iγ ) + Q(ζ − iγ ) = (−1)g+1t (z)Q(ζ )
where t (z) is constructed from the eigenvalues t . This equation coincides with equation (28)
written for particular eigenvalues. So, following [8] we claim that the wavefunction in separated
variables is defined by the eigenvalue of the operator Qwhich connects two different approaches
to integrable models.
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Note that the vector |t1, . . . , tg〉 is the eigenvector for the operators T1, . . . ,Tg since
the function Q(ζ ) satisfies equation (37). In order to identify explicitly the eigenvalues of
T1, . . . ,Tg we shall write |t1, . . . , tg; T1, . . . , Tg〉.

We have the algebra of operators A(q) and the dual algebra A(Q) which act in the
same space H. All the operators from A(q) commute with the operators from A(Q). The
fundamental property of A(q) is that it is spanned as linear space by elements of the form (17)
according to conjecture 3. A similar fact must be true for A(Q). Taking these facts together
one realizes the algebra A(q) ·A(Q) is spanned by the elements of the form

X = xX = pL(t1, . . . , tg)PL(T1, . . . ,Tg)

×g(b1, . . . , bg)G(B1, . . . ,Bg)PR(T1, . . . ,Tg)pR(t1, . . . , tg). (40)

We denote by h(z1, . . . , zg) andH(Z1, . . . ,Zg) the antisymmetric polynomials obtained from
g(b1, . . . , bg) and G(B1, . . . ,Bg): for example,

h(z1, . . . , zg) =
∏

zi
∏
i<j

(zi − zj )g(b1(z1, . . . , zg), . . . , bg(z1, . . . , zg)).

Let us consider the matrix element of operator X between two eigenvectors of
Hamiltonians. The wavefunctions are real for real ζ . By the requirement of self-adjointness
of t(z) and T (Z) one defines the scalar product [4]. The matrix element in question is

〈t1, . . . , tg; T1, . . . , Tg|X |t ′1, . . . , t ′g; T ′1, . . . , T ′g〉
= pL(t1, . . . , tg)pR(t ′1, . . . , t ′g)PL(T1, . . . , Tg)PR(T

′
1, . . . , T

′
g)

×
∫ ∞
−∞

dζ1 . . .
∫ ∞
−∞

dζgh(z1, . . . , zg)H(Z1, . . . , Zg)

g∏
j=1

Q(ζj )Q′(ζj ). (41)

When does the integral for the matrix element (41) converge? Suppose that

h ∼ zg+k+1
j H ∼ Zg+l+1

j when ζj →∞.
Then the integrand in the matrix element behaves when ζj →∞ as

exp 2ζj

(
(k − 1) +

π

γ
(l − 1)

)
.

Hence, for generic γ the integral converges only if k = 1, l = 0 or k = 0, l = 1. When
γ is small we can allow the operators with l = 0 and k < π

γ
; oppositely, when γ is big the

operators with k = 0 and l < γ

π
are allowed. The limits γ → 0 and γ → ∞ are two dual

quasiclassical limits. For these limits the operators l = 0,∀k and k = 0,∀l respectively define
the classical observables. At least these operators must be defined in the quantum case: if the
quantization procedure makes sense the principle of correspondence must hold. Hence, the
fact that in general only two operators with k = 1, l = 0 or k = 0, l = 1 lead to convergent
integrals means that some regularization of these integrals is needed. The regularized integrals
in question must allow us to define the matrix element (41) for arbitrary k, l; they have to
coincide with usual integrals whenever the latter are applicable and they must satisfy some
additional requirements which will be discussed in the section 9. The origin of these additional
requirements is in the cohomological construction explained in section 4.

Note that any antisymmetric with respect to z1, . . . , zg and Z1, . . . , Zg polynomial

h(z1, . . . , zg)H(Z1, . . . , Zg)

can be presented as a linear combination of products of Schur-type determinants

det |zkji | det |Zlji |
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where {k1, . . . , kg} and {l1, . . . , lg} are arbitrary sets of positive integers. So, the integrals (41)
can be expressed in terms of 1-fold integrals

〈l|L〉 �
∫ ∞
−∞

Q(ζ )Q′(ζ )l(z)L(Z) dζ (42)

where l and L are polynomials such that l(0) = 0 and L(0) = 0. The symbol � means that
the integrals in the rhs are not always defined; the regularization is defined in appendix B. In
the next section we describe results of this regularization.

9. Deformed Abelian differentials

In appendix B we define the polynomials sk(z). These polynomials are of the form

sk(z) = zg+1+k − g � k � 0

sk(z) = 1

iγ

(
qk − 1

qk + 1

)
zg+1+k + · · · k � 1

(43)

where · · · stands for terms of lower degree (containing tj , t ′j in coefficients) explicitly given in
appendix B.

In the classical case every polynomial defines an Abelian differential on the affine curve
X −∞±. Similarly, we consider the polynomials sk as corresponding to ‘deformed Abelian
differentials’. Let us be more precise. The regularized integrals are defined in appendix B in
such a way that they satisfy several conditions. The first of them is

〈sk|Sl〉 = 0 k � g + 1 ∀l (44)

〈sk|Sl〉 = 0 ∀k l � g + 1. (45)

Owing to (44), we consider the polynomials sk , k � g+1 as corresponding to exact forms. The
polynomials sk with k = −1, . . . ,−g correspond to first-kind differentials, so corresponds to
the third-kind one and sk with k = 1, . . . , g correspond to second-kind differentials.

Explicitly, the relation with the classical case is as follows. Consider the case t (z) = t ′(z)
and take the limit

rk = z−1 lim
γ→0

sk(z).

Then the classical Abelian differential related to sk is

µk = rk(z)
y

dz.

A similar interpretation can be given to Sk which correspond to Abelian differentials in
the dual classical limit γ → ∞. However, the most interesting feature of our construction
is that together with this cohomological interpretation an alternative ‘homological’ one is
possible. The polynomials Sk , k � g + 1 correspond to retractable cycles according to (45).
The polynomials Sk for k = ±1, . . . ,±g are interpreted as analogues of the cycles δk on
the ‘deformed affine curve’; S0 corresponds to cycle δ0 around∞+ which is nontrivial on the
affine curve. The pairing 〈l|L〉 defines the integral of the differential defined by l over the cycle
defined by L. The asymptotics of the integrals 〈l|L〉 in the classical limit γ → 0 are, indeed,
described by Abelian integrals. Certainly, the opposite interpretation (l-cycle, L-differential)
is possible, which corresponds to the dual classical limit. It is not the first time that this kind
of object has appeared [5], but it is the first time that we have observed real duality between
two classical limits.
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Let us define the pairing between two polynomials l1 and l2:

l1 ◦ l2 = lim
B→∞

∫ B+iπ

B

[Q(ζ )Q′(ζ )l1(z)δ−1
γ (QQ′l2)(ζ − iπ)

+Q(ζ − π i)Q′(ζ − iπ)l1(z)δ
−1
γ (QQ′l2)(ζ − iγ )] dζ (46)

where

δξ (f (ζ )) = f (ζ + iξ)− f (ζ ). (47)

One can show that these formulae give well-defined antisymmetric pairings which correspond
classically to natural pairing between meromorphic differentials

ω1 ◦ ω2 = resp=∞+

(
ω1(p)

∫ p

ω2

)
.

The polynomials s±j and for j = 1, . . . , g constitute the canonical basis

sk ◦ sl = sgn (k − l)δk,−l .
Similarly, to introduce the definition of L1 ◦ L2 it is sufficient to make the necessary
replacements in (46): li ↔ Li , z ↔ Z, γ ↔ π . The polynomials S±j are canonically
conjugated.

The following antisymmetric polynomials play the role of 2-forms σ and σ ′ used in
classics:

c(z1, z2) =
g∑
j=1

(s−j (z1)sj (z2)− sj (z1)s−j (z2))

C(Z1, Z2) =
g∑
j=1

(S−j (Z1)Sj (Z2)− Sj (Z1)S−j (Z2)).

(48)

As usual [5], the most important property of the deformed Abelian integrals is that the
Riemann bilinear relations remain valid after the deformation. Namely, consider the following
2g × 2g period matrix: P with the matrix elements

Pkl = 〈sk|Sl〉 k, l = −g, . . . ,−1, 1, . . . , g.

The deformed Riemann bilinear identity is formulated as follows.

Proposition 2. The matrix P belongs to the symplectic group:

P ∈ Sp(2g). (49)

This proposition is equivalent to a number of bilinear relations between the deformed Abelian
integrals. To prove them it is convenient to consider the domain of small γ (γ < π/n) when
the regularization of integrals simplifies, and then continue analytically with respect to γ .
Nevertheless, the proof is rather complicated technically: it is based on nontrivial properties
of the regularized integrals. We do not give this bulky proof here.

There is one more relation for deformed Abelian integrals. One can check that

〈d|Sk〉 = 0 ∀k d =
g∑
j=1

(tj − t ′j )s−j (50)

〈sk|D〉 = 0 ∀k D =
g∑
j=1

(Tj − T ′j )S−j . (51)

Relations (50) do not have a direct analogue in terms of Abelian integrals; recall that we put
tj = t ′j taking the classical limit which turns the relation into triviality. However, there is
another way of taking the classical limit where this equation is important [3].
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10. Return to quantization of the affine Jacobian

Let us return to the main subject of this paper: quantization of the affine Jacobian. Consider
any x ∈ A(q). Such x is identified with x · I ∈ A(q) · A(Q), so, owing to conjecture 3 the
matrix element of x can be presented as

〈t1, . . . , tg|x|t ′1, . . . , t ′g〉 = pL(t1, . . . , tg)pR(t ′1, . . . , t ′g)

×
∫ ∞
−∞

dζ1 . . .
∫ ∞
−∞

dζgh(z1, . . . , zg)HI (Z1, . . . , Zg)

g∏
j=1

Q(ζj )Q′(ζj ) (52)

where the eigenvalues of Tj are the same on the left and the right, so we do not write them
explicitly; the polynomial HI which corresponds to X = I is given by

HI(Z1, . . . , Zg) =
g∏
j=1

Zj
∏
i<j

(Zi − Zj).

Note that

HI = S−1 ∧ · · · ∧ S−g. (53)

The formula for the matrix elements (52) for small γ (when no regularization of integrals
is needed) can be deduced rigorously starting from the realization of A(q) defined in section 4.
The following equations follow respectively from (44), (50), (49) (recall the notation of
section 4):

sk ∧ Vg−1 � 0 k � g + 1 (54)

c ∧ Vg−2 � 0 (55)

d ∧ Vg−1 � 0 (56)

where � means that these expressions vanish, being substitute into the integral (52).
Equation (55) needs explanation. To prove this equation one has to take into account the
Riemann bilinear identity (49) and equation (53); note that

S−i ◦ S−j = 0 1 � i j � g.
The formula for the matrix elements (52) can be rigorously deduced for small γ . Hence,

equations (54)–(56) lead to certain equations for the operators from A(q) · A(Q). The latter
equations are obtained by applying the operation χ (section 4):

χ(sk ∧ Vg−1) = 0 k � g + 1 (57)

χ(c ∧ Vg−2) = 0 (58)

χ(d ∧ Vk−1) = 0. (59)

We conclude that the formulae for the polynomials sk needed in section 4 are exactly the same
as given in (43). Thus we put together the algebraic part of this work with the analytical one.

On the other hand, equations (57)–(59) are of purely algebraic character, so if they are
valid for small γ they must be valid always. That is why we regularized the integrals for the
matrix element in order that equations (54)–(56) hold for any γ .

Moreover, there is a dual model and we can consider the operators X = xX from
A(q) ·A(Q). Equations (57)–(59) and the dual equations still have to be valid. The regularized
integrals are defined in such a way that this is the case. Equations (57), (59) and their duals
clearly follow from (44), (45) and (50), (51). The most interesting is equation (58). Owing to
the Riemann bilinear relation this equation follows from

c ∧ Vg−2 � 0 (60)
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which is true if the subspace c ∧ Vg−2 of the space Vg is convoluted with the subspace
Vg

C ∧ Vg−2

where Vk is the same as Vk for the dual model (this notation is not occasional: the space Vk
plays the role of k-cycles for k-forms from Vk). In other words, we impose the equation

C ∧ Vg−2 = 0

and the dual equation (60) is imposed automatically due to the Riemann bilinear relation.
Let us discuss the classical limit in some more detail. Consider the hyper-elliptic curveX.

If we realize this curve as a characteristic equation of the classical analogue of the monodromy
matrix m̃(z) (21), the branch points of the curve can be shown real non-negative. In fact,
requiring tg+1 = (−1)g+12 we put one of the branch points at z = 0. Thus the branch points
are 0 = q1 < · · · < q2g+2. The Riemann surface is realized as a two-sheet covering of the
plane of z with cuts Ik = [q2k−1, q2k], k = 1, . . . , g + 1. The canonical a-cycles δ−j and
b-cycles δj are shown in figure 1.

Under classical dynamics each of the separate variables zj oscillates in the interval
q2j−1 � zj � q2j ; topologically this corresponds to motion along the a-cycle δ−j . One can
show that the integral 〈sk |S−j 〉 is described in the classical limit γ → 0 by δ−j of differential
µk . Thus the g-cycle (53) corresponds to the classical trajectory δ−1 ∧ · · · ∧ δ−g . Recall that
the cycle (53) corresponds to insertion of the unit operator of the dual model. Introducing other
dual operators, one gets integrals with respect to both a-cycles and b-cycles. Classically, the
corresponding trajectories are not real, but the factorization by σ ′ ∧Wm−2 in (12) guarantees
that the classical non-real trajectories are not singular. The topological interpretation of the
dual model is a good point to conclude this paper.

Appendix A

In this appendix we shall give the canonical definition of the affine Jacobi variety Jaff(t).
Consider the hyper-elliptic curve X of genus g:

w2 − t (z)w + 1 = 0.

We have the canonical basis with a-cycles δk , −g � k < 0 and b-cycles δk , 0 < k � g.
Associate with this basis the basis of normalized holomorphic differentials ωj :∫

δ−i
ωj = δij Bij =

∫
δi

ωj .

The Jacobi variety of this curve is the g-dimensional complex torus:

J (t) = C
g

Zg × BZg
.
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With every point p ∈ X we identify the point α(p) ∈ J (t) with coordinates

αj (p) =
∫ p

b

ωj .

For the reference point b it is convenient to take one of the branch points. The curve X has
two points over the point z = ∞; denote them by∞± and consider the (g − 1)-dimensional
subvariety of J (t) defined by

H± = {ζ ∈ J (t)|θ(ζ + α(∞−))θ(ζ + α(∞+)) = 0}
where θ is Riemann theta-function. It can be shown that there exist an isomorphism:

Jaff(t) � J (t)−H±. (61)

The equivalence of this description with the description in terms of divisors (section 1) is
due to the Abel map X[g]→ J (t) explicitly given by

ζ = α(P) +$ α(P) =
∑
α(pj )

where $ is the Riemann characteristic.

Appendix B

In this appendix we describe the regularization of integrals which has been used in the paper.
Define

$ξ(f (ζ )) = f (ζ + iξ)− f (ζ − iξ).

Introduce the polynomials

sk(z) = 1

2iγ
{t (z)$−1

γ [zk−g−1t (z)]> + t ′(z)$−1
γ [zk−g−1t ′(z)]>

−t (z)$−1
γ [zk−g−1q2(g+1−k)t ′(zq−2)]>

−t ′(z)$−1
γ [zk−g−1q2(g+1−k)t (zq−2)]>

− 1
2 (t
′(z)[zk−g−1t (z)]> + t (z)[zk−g−1t ′(z)]>)

+(q2(g+1−k)k − q2(k−g−1))[zk−g−1]>} k � 0

sk(z) = zg+1+k − g � k � 0

where the notation [ ]> means that only the positive degrees of Laurent series in brackets
are taken. Obviously, deg(sk) = g + 1 + k. Further, with every function f (ζ ) associate the
functions:

u[f ](ζ ) = 1

2iγ
{t (z)$−1

γ (f (ζ )t (z)) + t ′(z)$−1
γ (f (ζ )t

′(z))

−t (z)$−1
γ (f (ζ − iγ )t ′(zq−2))− t ′(z)$−1

γ (f (ζ − iγ )t (zq−2))

−f (ζ )t (z)t ′(z) + f (ζ + iγ )− f (ζ − iγ )}
v[f ](ζ ) = 1

2iγ
{(−1)g+1($−1

γ (f (ζ − iγ )t (zq−2))Q(ζ )Q′(ζ − iγ )

+$−1
γ (f (ζ − iγ )t ′(zq−2))Q(ζ − iγ )Q′(ζ )

−$−1
γ (f (ζ )t (z))Q(ζ − iγ )Q′(ζ )

−$−1
γ (f (ζ )t

′(z))Q(ζ )Q′(ζ − iγ ))

+f (ζ )Q(ζ − iγ )Q′(ζ − iγ ) + f (ζ − iγ )Q(ζ )Q′(ζ )}.
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Define

s−k (ζ ) =


−sk(z) + u[f ](ζ ) f = zk−g−1 k � 1
−s0(z) + u[f ](ζ ) + (−1)g+12 f = ζz−g−1 k = 0
−zg+1+k −g � k � −1

and

pk(ζ ) =



v[f ](ζ ) f = zk−g−1 k � 1

v[f ](ζ ) f = ζz−g−1 k = 0

0 −g � k � −1.

These definitions imply that

(sk(z) + s−k (z))Q(ζ )Q′(ζ ) = δγ (pk(ζ )). (62)

Similarly, one introduces the functions Sk(Z), S
−
k (ζ ), Pk(ζ ), changing everywhere z by

Z, q byQ and iγ -shift of ζ by iπ -shift of ζ . One has

(Sk(z) + S−k (z))Q(ζ )Q′(ζ ) = δπ (Pk(ζ )). (63)

Our goal is to define a pairing 〈l|L〉 between two arbitrary polynomials l(z) and L(Z) such
that l(0) = 0, L(0) = 0. Note that every such polynomial l (L) can be presented as a linear
combination of polynomials sk (Sk).

Consider figure B1.
We define

〈sk|Sl〉 ≡
∫ B1

−∞
Q(ζ )Q′(ζ )sk(z)Sl(Z) dζ

+
∫ B2

B1

Q(ζ )Q′(ζ )s−k (ζ )Sl(Z) dζ +
∫ ∞
B2

Q(ζ )Q′(ζ )s−k (ζ )S−l (ζ ) dζ
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−
∫ B1+iγ

B1

Sl(Z)pk(ζ ) dζ −
∫ B2+iπ

B2

s−k (ζ )Pl(ζ ) dζ (64)

see figure B1(a). The first integral in the rhs converges at −∞ because l(0) = L(0) = 0.
Equations (62), (63) guarantee that the regularization (64) does not depend on B1, B2 if they
remain ordered: B1 < B2. Moreover, let us transform figure B1(a) into figure B1(b). The
alternative definition of the regularized integral referring to figure B1(b) is

〈sk|Sl〉 ≡
∫ B2

−∞
Q(ζ )Q′(ζ )sk(z)Sl(Z) dζ

+
∫ B1

B2

Q(ζ )Q′(ζ )sk(z)S−l (ζ ) dζ +
∫ ∞
B1

Q(ζ )Q′(ζ )s−k (ζ )S−l (ζ ) dζ

−
∫ B1+iγ

B1

sk(z)Pl(ζ ) dζ −
∫ B2+iπ

B2

S−l (ζ )pk(ζ ) dζ. (65)

The equivalence of the regularizations (64) and (65) is based on the following fact. It is easy
to realize that for any l and L there exists a function Xkl(ζ ) such that

(Sl(Z)− S−l (ζ ))pk(ζ ) = δπ (Xkl(ζ ))
(sk(z)− s−k (ζ ))Pl(ζ ) = δγ (Xkl(ζ )).

The equivalence in question follows from the equality:∫ B+iγ

B

(Sl(Z)− S−l (ζ ))g(ζ ) dζ =
( ∫ B+iπ+iγ

B+iπ
−

∫ B+iγ

B

)
Xkl(ζ ) dζ

=
( ∫ B+iπ+iγ

B+iγ
−

∫ B+iπ

B

)
Xkl(ζ ) dζ =

∫ B+iπ

B

(sk(z)− s−k (ζ ))G(ζ ) dζ.
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